

B ANSWERS TO SELECTED EXERCISES

Exercise 3-1. An easy way to ignore blank lines is to replace the first line of sum3 by
nfld == 0 && NF > 0 { nfld = NF

0

Exercise 3-3. Without the test, sums of nonnumeric columns get accumulated, but not
printed. Having the test avoids the possibility that something will go wrong (like over
flow) while accumulating the useless sums. There is no significant effect on speed. o

Exercise 3-4. This problem is easily handled with an associative array:
{ total($1] += $2 }

END { for (x in total) print x, total[x] : "sort" }

0

Exercise 3-5. Suppose there cannot be more than 25 stars in a line. By setting max to
25, the following program leaves the data unchanged if the longest line would fit, and

./ otherwise scales the lines so the longest is 25 long. The new array y is used to hold the
scaled lengths so that the x counts are still correct.

0

x[int($1/10)]++ }
END max = MAXSTARS = 25

for (i = 0; i <= 10; i++)
if (x[i] > max)

max = x[i]
for (i = 0; i <= 10; i++)

y[i] = x[i]/max * MAXSTARS
for (i = 0; i < 10; i++)

print£('' "2d- "2d: %3d %s\n",
10•i, 10+i+9, x[i], rep(y[i],"•"))

print£("100: "3d "s\n", x[10], rep(y[10],"•"))

function rep(n,s, t)
while (n-- > 0)

t = t s
return t

return string of n s's

Exercise 3-6. This requires two passes over the data, one to determine the range of the
buckets and one to assign items to them. o

193

194 ANSWERS TO SELECTED EXERCISES APPENDIX B

Exercise 3-7. The problem of where commas go in numbers is not clearly defined.
Despite the canons of software engineering, it is common to have to solve a problem
without knowing exactly what it is. Here are two possible answers. The following pro
gram sums integers that have commas in the conventional places:

/A[+-]?[0-9][0-9]?[0-9]?(,[0-9][0-9][0-9])•$/ {
gsub(/ ,/, "")
sum += SO
next

print "bad format:", SO)
END print sum }

Decimal numbers usually don't have commas after the decimal point. The program
/A[+-]?[0-9][0-9]?[0-9]?(,[0-9][0-9][0-9])•([.)[0-9]•)?$/

gsub (/ t / t II II)

sum += SO
next

print "bad format:", $0}
END print sum }

sums decimal numbers that have commas and a digit before the decimal point. o

Exercise 3-8. The function daynwn (y, m, d) returns the number of days, counting
from January 1, 1901. Dates are written as year month day, e.g., 2001 4 1. February
has 29 days in years divisible by 4, except that it has 28 days in years divisible by 100
but not by 400. Thus, 1900 and 2100 are not leap years, but 2000 is.

function daynum(y, m, d, days, i, n) { # 1 == Jan 1, 1901
split("31 28 31 30 31 30 31 31 30 31 30 31", days)
365 days a year, plus one for each leap year
n = (y-1901) * 365 + int((y-1901)/4)
if (y % 4 == 0) # leap year from 1901 to 2099

days[2]++
for (i = 1; i < m; i++)

n += days[i)
return n + d

{ print daynum($1, S2, $3) }

This program is correct only between 1901 and 2099; it does not check the validity of its
input. o

Exercise 3-11. One way to modify nwntowords is as follows:
function numtowords(n, cents, dols, s) { # n has 2 decimal places

cents = substr(n, length(n)-1, 2)
dols = substr(n, 1, length(n)-3)
if (dols == 0)

s = "ze~o dollars and " cents " cents exactly11

else
s intowords(dols) " dollars and 11 cents 11 cents exactly"

sub(/Aone dollars/, 11 one dollar 11
, s)

g'SUb(/ +/, II
11

, S)
return s

The sub command fixes "one dollars," and the gsub removes multiple blanks, even if
nothing is wrong. This is easier than testing whether any changes are needed. 0

ANSWERS TO SELECTED EXERCISES APPENDIX 8 195

Exercise 3-13. For simplicity. suppose the pairs are aa and bb, cc and dd, ee. and
ff. As in the text. assume that none of these are allowed to nest or overlap.

BEGIN {

}

expects["aa"] "bb"
expects["cc"] "dd"
expects ["ee"] "ff"

/"(aalcclee)/ {
if (p I= 1111)

}

print "line", NR, ": expected " p
p = expects[substr($0, 1, 2)]

/"(bblddlff)/ {

END

x = substr($0, 1, 2)
if (p I= x) {

p

print "line", NR, ": saw" x
if (p)

print ", expected 11
, p

if (p I= II")
print "at end, missing", p

The variable p encodes the state by recording what matching delimiter is expected. The
program takes advantage of the fact that all the opening delimiters are the same length.
An alternative would be to require that the delimiters always be $1. o

Exercise 3-14. Choose some marker, for instance =, that cannot be a legal pattern.
Then

BEGIN { FS = "'\t" }
1"=1 { print substr($0, 2); next }
{ printf("%s {\n\tprintf(\"line %%d, %s: %%s'\\n'\'1 ,NR,$0) }\n",

$1 t $2)

prints the rest of lines that start with the marker. 0

Exercise 4-1. One possibility is to give the date explicitly on the command line:

awk -f prep3 pass=1 countries pass=2 countries I
awk -f form3 date='January 1, 1988'

The variable date is then set on the command line. and its assignment can be left out of
the BEGIN action of form3. As usual, some sort of quoting is needed for command-line
arguments containing blanks. Another possibility is to pipe the output of the date com
mand into the variable, as suggested in Section 3.1. o

Exercise 4-3. Before looking at our solution, check to see what yours does on numbers
without decimal points. For brevity our solution just does a single column. We replace
nwid by two numbers, lwid and rwid. lwid accumulates the length of the number to
the left of the decimal point, and rwid counts the number of digits to the right of the
decimal point and the decimal point itself. These are computed using the patterns left
and right. The space needed for numbers is then lwid+rwid, which may be bigger
than the length of the longest number. so the calculation for wid takes this into account.

196 ANSWERS TO SELECTED EXERCISES

table1 - single column formatter
input: one column of strings and decimal numbers
output: aligned column

BEGIN {
blanks = sprintf("%100s", " ")
number = ""[+-]?([0-9]+[.]?[0-91* I [. 1 [0-9]+)S''
left = ""[+-1?[0-9]*"
right= "[.)[0-9]*"

row[NR] = S1
if ($1 - number)

APPENDIX 8

match(S1, left) #matches the empty string, so RLENGTH>=O
lwid = max(lwid, RLENGTH)

END

if (lmatch(S1, right))
RLENGTH = 0

rwid = max(rwid, RLENGTH)
wid max(wid, lwid + rwid)

else
wid max(wid, length($1))

for (r = 1; r <= NR; r++) {
if (row[r] - number)

print£("%" wid "s\n", numjust(row[r]))
else

print£("%-" wid "s\n", row[r])

function max(x, y) { return (x > y) ? x y }

function numjust(s) { # position s
if (lmatch(s, right))

RLENGTH = 0
returns substr(blanks, 1, int(rwid-RLENGTH+(wid-(lwid+rwid))/2))

Each number that doesn't use all of lwid has to be shifted left, so there is a slightly
more elaborate calculation in numjust. D

Exercise 4-5.

awk '
BEGIN { FS = "\t"; pat= ARGV[1]; ARGV[1]
$1 - pat {

printf("%s:\n", S1)
printf("\t%d million people\n", $3)
printf("\t%.3£ million sq. mi.\n", $2/1000)
printf("\t%.1£ people per sq. mi.\n", 1000*$3/$2)

' "$1" <countries

is one way.
Another, using var-text on the command line instead of ARGV, is

ANSWERS TO SELECTED EXERCISES APPENDIX B 197

0

awk •
BEGIN { FS "' "\t" }
S1 - pat {

printf(""s:\n", $1)
printf("\t"d million people\n", $3)
print£ ("\t%. 3£ million sq. mi. \n", $2/1000)
print£("\t%.1£ people per sq. mi. \n", 1000*$3/$2)

• pat::"$1" <countries

Exercise 4-6. To check that the files are sorted, keep track of the last record read from
each input, and compare it with the result of getline in getone. 0

Exercise 4-10. Replace the loop in doquery that calls system with one that concaten
ates all the commands into one string x, for instance

for (j "' 1; j <:: ncmd(i]; j++) x"' x cmd[i, j] "\n"

and then use x in the call to system. If x is made a local variable in doquery, it will
be properly initialized on each call. o

Exercise 4-11. Here is a partial solution that remembers which derived files have been
computed during one execution of qawk, and avoids recomputing them.

function doquery(s, i,j,x) {
for (i in qattr) # clean up for next query

delete qattr(i]
query "' s # put $names in query into qattr, without S
while (match(s, /\$(A-Za-z]+/)) {

qattr[substr(s, RSTART+1, RLENGTH-1)] :: 1
s "' substr(s, RSTART+RLENGTH+1)

for (i"' 1; i <:: nrel && lsubset(qattr, attr, i);)
i++

if (i > nrel) # didn't find a table with all attributes
missing(qattr)

else { # table i contains attributes in query
for (j in qattr) # create awk program

gsub("\\$" j, "S" attr[i,j], query)
if (lexists[i] && ncmd(i] > 0) {

for (j"' 1; j <= ncmd[i]; j++)
x "' x cmd[i, j] "\n"

print "executing\n" x # for debugging
if (system(x) I= 0) { # create table i

print "command failed, query skipped\n", x
return

exists[i]++

awkcmd = sprintf("awk -F'\t' '%s' %s", query, relname[i])
printf("query: %s\n", awkcmd) #for debugging
system(awkcmd)

The array exists remembers which derived files have been computed. This version of
doquery also includes the answer to the last problem. 0

Exercise 4-12. The simplest answer is to change qawk to begin

198 ANSWERS TO SELECTED EXERCISES APPENDIX B

BEGIN { readrel(nrelfile"); RS = nn }

Then a query consists of everything up to a blank line. Regardless of the mechanism,
queries have to turn into legal awk programs. 0

Exercise 5-l. The "random" numbers are of course completely deterministic: knowing
the seed and the algorithm fixes the sequence of values. There are many properties,
however, that the sequence shares with a random sequence. A complete discussion may
be found in Knuth's The Art of Computer Programming, Volume 2. 0

Exercise 5-2. This code generates a random set of k distinct integers between 1 and n; it
is due to R. W. Floyd:

0

print k distinct random inteqers between 1 and n

{ random($1, $2) }

function random(k, n, A, i, r)
for (i = n-k+1; i <= n; i++)

((r = randint(i)) in A) ? A[i] A[r]
for (i in A)

print i

function randint(n) {return int(n•rand())+1 }

Exercise 5-3. The problem is to generate random bridge hands of the form:

NORTH
S: 10 9 6 4
H: 8 7
D: J 10 6
C: 10 8 5 3

WEST EAST
s: K 8 7 3 s: A J 5
H: K Q 4 3 2 H: J
D: 8 7 D: A K Q 9 2
C: A J C: K Q 6 2

SOUTH
S: Q 2
H: A 10 9 6 5
D: 5 4 3
C: 9 7 4

The program below generates a random permutation of the integers 1 through 52, which
is put into the array deck. The array is sorted into four sequences of thirteen integers
each. Each sequence represents a bridge hand; the integer 52 corresponds to the ace of
spades, 51 to the king of spades, 1 to the deuce of clubs.

The function permute (k, n) uses Floyd's technique from the previous exercise to
generate a random permutation of length k of integers between 1 and n. The function
sort (x, y) uses a method called insertion sort, discussed in Section 7.1, to sort the ele·
ments in deck[x •• y]. Finally, the function prhands formats and prints the four
hands in the manner shown above.

ANSWERS TO SELECTED EXERCISES APPENDIX B 199

0

bridge - generate random bridge hands

BEGIN { split(permute(52,52), deck) #generate a random deck
sort(1,13); sort(14,26); sort(27,39); sort(40,52) #sort hands
prhands() #format and print the four hands

function permute(k, n,
srand(); p =""

i, p, r)

for (i = n-k+1; i <= n; i++)

generate a random permutation
of k integers between 1 and n

if (p- " " (r = int(i•rand())+1) " ")
sub (11 11 r " " , " " r " " i " " , p) # put i after r in p

else p = " " r p # put r at beginning of p
return p

function sort(left,right, i,j,t) {#sort hand in deck[left .. right]
for (i = left+1; i <= right; i++)

for (j = i; j > left && deck[j-1] < deck[j]; j--)
t = deck[j-1]; deck[j-1] = deck[j]; deck[j] = t

function prhands() {
b = sprintf("%20s", " "); b40
card = 1

print the four hands
sprintf("%40s", " ")

global index into deck
suit~(13); print b" NORTH"
print b spds; print b hrts; print b dnds; print b clbs
suits(26) #create the west hand from deck[14 .. 26]
ws spds substr(b40, 1, 40 length(spds))
wh hrts substr(b40, 1, 40 length(hrts))
wd dnds substr(b40, 1, 40- length(dnds))
we clbs substr(b40, 1, 40- length(clbs))
suits(39); print" WEST" sprintf("%36s", " ") "EAST"
print ws spds; print wh hrts; print wd dnds; print we clbs
suits(52); print b" SOUTH"
print b spds; print b hrts; print b dnds; print b clbs

function suits(j) {
for (spds = "S:";

spds = spds "
for (hrts = "H:";

hrts = hrts "
for (dnds = "D:";

dnds = dnds "

#collect suits of hand in deck[j-12 .. j]
deck[card] > 39 && card <= j; card++)
"fvcard(deck[card])
deck[card] > 26 && card <= j; card++)
" fvcard(deck[card))
deck[card] > 13 && card <= j; card++)
" fvcard(deck[card])

for (clbs = "C:"; card <= j; card++)
clbs = clbs" " fvcard(deck[card])

function fvcard(i) {
if (i % 13 == 0) return "A"
else if (i % 13 12) return "K"
else if (i% 13 == 11) return "Q"
else if (i % 13 == 10) return "J"
else return (i % 13) + 1

compute face value of card i

200 ANSWERS TO SELECTED EXERCISES APPENDIX B

Exercise 5-5. Doing an intelligent job on this is hard. Simplest is to keep track of how
many characters have been put out, and to stop with an error message. when there are
too many. Slightly more complex would be to try. in gen, only to derive the empty
string or terminals. once the derivation becomes too long. Unfortunately. this won't
work on every grammar every time. One guaranteed method requires knowing the short
est output each nonterminal can produce, and forcing that when the derivation becomes
too long. This requires substantial processing of the grammar, and some specialized
knowledge. o

Exercise 5-6. We add a probability to the end of each production. These probabilities
are first read into the array rhsprob. After the grammar has been read, rhsprob is
changed so that it represents the probability of this or any previous production, rather
than this production. This makes the test in gen a little simpler; otherwise the probabil
ities would have to be be summed over and over again.

0

sentgen1 - random sentence generator with probabilities
input: grammar file; sequence of nonterminals
output: random sentences generated by the grammar

BEGIN { # read rules from grammar file
while (getline < "test-gram" > 0)

if ($2 == "->") {
i = ++lhs[$1]
rhsprob[$1, i] = SNF
rhscnt[$1, i] = NF-3
for (j = 3; j < NF; j++)

rhslist[$1, i, j-2] =
else

Sj

count lhs
0 <= probability <= 1
how many in rhs
record them

print "illegal production: " SO
for (sym in lhs)

for (i = 2; i <= lhs[sym]; i++)
rhsprob[sym, i] += rhsprob[sym, i-11

if ($1 in lhs) { # nonterminal to expand
gen($1)
printf("\n")

else
print "unknown nonterminal: 11 SO

function gen(sym, i, j) {
if (sym in lhs) { # a nonterminal

j =rand() #random production
for (i 1; i <= lhs[sym] && j > rhsprob[sym, i]; i++)

for (j 1; j <= rhscnt[sym, i]; j++) #expand rhs's
gen(rhslist[sym, i, j])

else
printf("%s ", sym)

Exercise 5-7. The standard approach is to replace recursion by a stack managed by the
user. When expanding the right-hand side of a production. the code puts it on the stack
backwards, so the output comes out in the right order.

ANSWERS TO SELECTED EXERCISES APPENDIX B 20 I

0

sentgen2 - random sentence generator (nonrecursive)
input: grammar file; sequence of nonterminals
output: random sentences generated by the grammar

BEGIN { # read rules from grammar file
while (getline < "grammar" > 0)

if ($2 == "->") {
i = ++lhs[$1]
rhscnt[$1, i] = NF-2
for (j = 3; j <= NF; j++)

rhslist[S1, i, j-2] = Sj
else

count lhs
how many in rhs
record them

print "illegal production: " SO

if ($1 in lhs) # nonterminal to expand
push($1)
gen()
printf{"\n")

else
print "unknown nonterminal: " SO

function gen(i, j)
while (stp >= 1) {

sym = pop()
if (sym in lhs) { # a nonterminal

i = int(lhs[sym] *rand()) + 1 #random production
for (j = rhscnt[sym, i]; j >= 1; j--) #expand rhs's

push(rhslist[sym, i, j])
else

print£ ("%s " , sym)

function push(s) { stack[++stp] = s }

function pop() {return stack[stp--] }

Exercise 5-9. The easiest solution is to create an initial random permutation of the
integers from I to nq, then ask the questions in that order. 0

Exercise 5-10. The cleanest way to do case conversion in awk is with an array that
maps each letter; this is pretty clumsy, however, so if you have a choice it's better to use
a program like the Unix command tr. o

Exercise 5-13. We accumulate the words into an array. If there are cnt words to be
printed on a line, then there are cnt-1 holes to fill with spaces. If there are n spaces
needed, each hole should have an average of nl (cnt-1) spaces. For each word, the
program computes this number, then decrements the number of holes and spaces. If the
extra blanks do not distribute evenly, the surplus ones are spread alternately from the
left and from the right on successive lines, to avoid "rivers" of white space.

202 ANSWERS TO SELECTED EXERCISES

I fmt.just- formatter with right justification

BEGIN
1.1
/"$/

blanks = sprintf("%60s", " ") }
for {i = 1; i <= NF; i++) addword{Si)
printline("no"); print"" }
printline("no") } END

function addword(w) {
if {cnt + size + length(w) > 60)

printline("yes")
line[++cnt] = w
size += length(w)

function printline(f, i, nb, nsp, holes) {
if (f == "no" I I cnt 1) {

for (i = 1; i <= cnt; i++)
printf("%s%s", line[i], i < cnt ? : "\n")

else if {cnt > 1) {

APPENDIX 8

dir = 1 - dir # alternate side for extra blanks
nb = 60 - size # number of blanks needed
holes = cnt - 1 # holes
for (i = 1; holes > 0; i++) {

nsp = int((nb-dir) I holes) + dir
printf("%s%s", line[i], substr(blanks, 1, nsp))
nb -= nsp
holes--

print line[cnt]

size = cnt = 0

A "no" argument to printline avoids right-justifying the last line of a paragraph. D

Exercise 5-15. It depends on whether the defective name appears anywhere else in the
document. If it does, it will be erroneously substituted away. D

Exercise 5-16.
/"\.#/

END

D

Exercise 5-18.
/"\.#/

print£("{ gsub(l%s/, \"%d\") }\n", S2, ++count[S1])
if (saw($2])

print NR ": redefinition of", $2, "from line", saw($2]
saw[$2] = NR

print£ ("I/" [.]#/\n")

s[$2] = ++count[S1]; next }
for (i in s)

gsub (i , s [i l)
print

The definition of a symbolic name must come before it is used. D

Exercise 5-19. The easiest solution consonant with the divide-and-conquer strategy is to
add a filter to the pipeline to delete rotated lines that begin with a word from the stop
list:

ANSWERS TO SELECTED EXERCISES APPENDIX 8 203

0

awk '$1 1- /A(alanlandlbylforliflinlisloflonlthelto)$/'
sort -f

Exercise 5·23. How to distinguish between a literal - and the - used as a space is a
question of style. We will use the awk escape sequence convention: \before the charac·
ter when we want the literal character. We'll consider only -; the others are just ela
borations in both ix. genkey and ix. format. For -, we replace all instances of \
by some string that cannot occur, namely a tab followed by 1. No string containing a
tab can occur, because tab is the field separator. The remaining tildes are substituted
away, and the escaped ones are put back, unescaped. Thus, the first gsub in
ix. genkey is replaced by

gsub(/,-/, "'t1", $1)
gsub(/-1, " ", $1)
gsub(/,t1/, "-", S1)

protect quoted tildes
unprotected tildes now become blanks
restore protected tildes

Also, the tildes should no longer be removed from the sort key. o

Exercise 6-1. Only four lines have to be added, two in pass 1 and two in pass 2.

0

ASSEMBLER PASS 1
nextmem = 0
FS = 11

['tl+"
new

while (getline <srcfile >
input[nextmem] = $0
sub(/#. *I, "")
symtab[$1) = nextmem

0) {
new: remember source line
strip comments
remember label location

if ($2 I= "") { # save op, addr if present
print $2 "'t" $3 >tempfile
nextmem++

close(tempfile)

ASSEMBLER PASS 2
nextmem = 0
while (getline <tempfile > 0) {

if ($2 1- /A[0-9)*$/) # if symbolic addr,
S2 = symtab[$2) # replace by numeric value

mem[nextmem++] = 1000 * op[$1] + $2 #pack into word

for (i = 0; i < nextmem; i++) # new: print memory
printf("%3d: %0Sd %s'n", i, mem[i], input[i]) #new

Exercise 6-6. It's surprisingly difficult to find some simple modification of graph to do
this, because knowledge of x and y is embedded throughout the program, and in many
variables like bticks and 1 ticks. Perhaps more fruitful is to define a filter
transpose that processes the input. Here is one, obtained by editing graph to take
the appropriate action for each kind of line.

204 ANSWERS TO SELECTED EXERCISES APPENDIX 8

transpose - input and output suitable for graph
input: data and specification of a graph
output: data and specification for the transposed graph

BEGIN {
number = 11 "[-+]?([0-9]+[.]?[0-9]*: [.][0-9]+) 11

\

"([eE][-+]?[0-9]+)?$ 11

}
$1 == c•bottom" &.&. $2 "ticks" { # ticks for x-axis

$1 = 11 left"
print
next

}
$1 == c•left" &.&. $2 11 ticks" { # ticks for y-axis

$1 = "bottom"
print
next

}

$1 == "range" # xmin ymin xmax ymax
print $1, $3, $2, $5, $4
next

}

$1 == "height" { $1 11width"; print; next }
$1 == c•width" { $1 "height"; print; next }
$1 - number&.&. $2 - number { nd++; print $2, $1, $3; next }
$1 - number &.&. $2 1- number { # single number:

nd++ # count data points
print $1, nd, $2 # fill in both x andy
next

print }

A simple version of logarithmic axes could be done the same way. D

Exercise 6-13. These are all just additional cases in the large if statement. For
instance,

else if ($i == "pi")
stack[++top] = 3.14159265358979

D

Exercise 7-1. The condition A[i] > A[i+1] is essentially the invariant that is enforced
by the algorithm, so it should be true automatically. The real problem is that check
doesn't check that the output is a permutation of the input: it won't notice if elements
are moved outside of the proper array bounds. D

Exercise 7-3. As described briefly in Chapter 8, awk uses a hash table to store arrays.
These hash tables allow constant-time lookup of elements in small arrays, but take more
time as the arrays grow. D

Exercise 7-8. The END action inserted by makeprof is executed after any other END's
that might be present, so an exit in an earlier END would stop the program. A partial
fix is to change makeprof to print its END action before anything else. D

Exercise 7-10. Again, push the nodes onto a stack instead of printing them, then print
the stack from the bottom after the end of the input. Alternatively, reverse the roles of
$1 and $2, either in rtsort or by a separate program. D

&.&. AND operator 10, 31, 37, 158
"" assignment operator 38
•= assignment operator 38
+=asSignment operator 38
-= assignment operator 38
I= assignment operator 38
A"' assignment operator 38
.. assignment operator 38, 44
\ backslash 28, 30, 41, 43
{ ... } braces 15, 22, 41, 167, 188
I comment 15, 22, 188
> comparison operator 9
> = comparison operator 9
==comparison operator 9, 44
? : conditional expression 37, 68
,. continuation after 22, 188
--decrement operator 39, 70,

112
A exponentiation operator 15, 36,

46
" format conversion 42, 189
- in character class 29
"" in print£ 79
& in substitution 43, 72, 189
++ increment operator 39, 146,

158
: input pipe 62, 76
·match operator 25, 27, 31, 37,

40
1- nonmatch operator 25, 27, 31,

37,40
I NOT operator 10, 31, 37
:I OR operator 10, 31, 37
> output redirection 56, 58, 188
» output redirection 56, 58, 188
I output redirection 58, 188
'• quotes 2, 4·5, 65, 100
• regular expression 28
s regular expression 28, 119
A regular expression 28, 119
() regular expression 29
l... I regular expression 29
[" ...) regular expression 29
: regular expression 29, 32
• regular expression 30
+ regular expression 30
? regular expression 30
" remainder operator 36, 46
- standard input filename 64,

116
• ... • string constant 7, 24, 35, 51

underscore 35

SO at end of input 13
SO blank line 192
SO record variable 5, 35
SO, side-effects on 36, 43
\007 bell character 31
\b backspace character 31
/dev/tty file 59
-f option 4-5, 63, 65, 187
-F option 60, 63, 187
>file, print 90, 188
#include processor 62, 64
Sn field 5, 35
\n newline character 8, 31, 79
r, computation of 39
\ t tab character 15, 24, 31
Sx++ versus S(x++) 146

action, default 5, 9, 21, 187
actions, summary of 34, 188
add checks and deposits 87
addcomma program 72, 194
address list 82
address list, sorting 84
aggregation 51, 58, 119
Abo, A. V. 130, 152, 179, 186
Abo, S. vi
Akkerhuis, J. vi
algorithm, depth-first search 172,

177
algorithm, heapsort 162
algorithm, insertion sort 153
algorithm, linear 157, 183
algorithm, make update 176
algorithm, n log n 162, 165
algorithm, quadratic 157, 162,

183
algorithm, quicksort 160
algorithm, topological sort 171
AND operator,&.&. 10, 31, 37,

158
ARGC variable 36, 63, 189
arguments, command-line 63
arguments, function 54
ARGV, changing 64·65, 116
ARGV variable 36, 63-65, 116,

189
arith program 117
arithmetic expression grammar

145
arithmetic functions, summary of

190
arithmetic functions, table of 39

205

INDEX

arithmetic operators 36, 44
arithmetic operators, table of 46
array, associative 50·51, 193
array parameter 54
array reference, cost of 184, 204
array subscripts S0-52
arrays 16, 50
arrays, multidimensional 52, 108,

114, 116, 182
asm program 134, 203
aspli t function 81
assembler instructions, table of

132
assembly language 133
assignment, command-line 63, 94,

187, 195, 197
assignment expression 39, 127
assignment, multiple 39
assignment operator,""" 38
assignment operator, •"" 38
assignment operator, +"" 38
assignment operator, -"" 38
assignment operator, /:;: 38
assignment operator, "= 38.
assignment operator, = 38, 44
assignment operators 38
assignment, side-effects of 43
associative array 50-51, 193
associativity of operators 46
atan2 function 39
attribute, database 103
avoiding sort options 91, 140
awk command line I, 3, 63, 65,

187
awk grammar 148
awk program, form of 2, 21, 187
awk program, running an 3
awk programs, running time of

183
awk. parser program 149

back edge 173-174
backs1ash, \ 28, 30, 41, 43
backspace character, \b 31
bailing out 4
balanced delimiters 77, 195
base table I 06
batch sort test program 155
BEGIN and END, multiple 23, 169
BEGIN pattern II, 23, 63
bell character, \007 31
Bentley, J. L. vi, 130, 152, 179

206 THE A WK PROGRAMMING LANGUAGE

binary tree 163
blank line, SO 192
blank line, printing a II, 55
blank line separator 83
boundary condition testing I 55
braces, { ... } 15, 22, 47, 167, 188
breadth-first order 163, 171
break statement 49
bridge program 199
built-in variables, table of 36
bundle program 81

calc 1 program 143
calc2 program 144
calc3 program 146
call by reference 54
call by value 54
capitals file 102
cat command 59, 64
cc command 175
changing ARGV 64-65, 116
character class, - in 29
character class, complemented 29
character class, regular expression

29
characters, table of escape 31
check function I 55
chcc::k password file 78
check 1 program 87
check2 program 87
check3 program 88
checkgen program 79
chcc::king, cross-reference 73
chcc::ks and deposits, add 87
chcc::ks, printing 74
Cherry, L. L. vi
chmod command 65
choose function 112
cliche program 113
close statement 59, 82
coercion 44, 1 54, 182
coercion, number to string 25
coercion rules 44, 192
coercion, string to number 25
coercion to number 45
coercion to string 45
colcheck pro,ram 77
columns, summmg 67
command, cat 59,64
command, cc 175
command, chmod 65
command, date 62, 76
command, egrep 59, 181, 184,

186
command, grep v, 181, 184
command interpreter, shell 4, 65,

99
command, join 104
command line, awk I, 3, 63, 65,

187
command, lorder 170
command, ls 177
command, make 175
command, nm 73
command, pr 175
command, ptx 123
command, sed v, 181, 184, 186
command, sort 8, 58, 84, 90
command, tbl 95
command, tr 201
command, troff 120, 124-125,

127, 139
command, we 183

command, who 62
command-line arguments 63
command-line assignment 63, 94,

187, 195, 197
commas, inserting 71
comment, # I 5, 22, 188
comparison expression, value of

37
comparison, numeric 25-26, 44
comparison operator, > 9
comparison operator, >"' 9
comparison operator, ::::: 9, 44
comparison operators 36
comparison operators, table of 25
comparison, string 25-26, 44, 184
compat program 80
compiler model 131
complemented character class 29
compound patterns 31
computation of basc-10 logarithm

39
computation of e 39
computation of 1r 39
concatenation in regular

expression 29
concatenation operator 40, 43,

182
concatenation, string 13, 40, 43,

47, 56, 101, 182, 184
conditional expression, ? : 37, 68
constant, • .. .- string 7, 24, 35, 51
constant, numeric:: 35
constraint graph 170
context-free grammar 113, 145,

148
continuation after , 22, 188
continue statement 49
continuing long statements 15,

22, 188
control-break program 92, 95,

105, 110, 126
control-flow statements, summary

of 48
conversion, " format 42, 189
conversion, date 72, 194
conversion, number to string 35,

44, 192
conversion, string to number 35,

44, 192
convert numbers to words 76
cos function 39
cost of array reference 184, 204
countries file 22
Cowlisbaw, M. F. 186
cross-reference c::bcc::king 73
cross-references in manuscripts

120
cycle, graph 171, 173-174, 177

Dallen, J. A. 152
data, name-value 86
data, regular expressions in 118
data, self-identifying 86
data structure, successor-list 171
data types 5
data validation 10, 76
database attribute 103
database description, relfile

106
database, multifile 102
database query 99
database table 103
databases, relational iv, 102

INDEX

date command 62,76
date conversion 72, 194
dates, sorting 72
daynum function 194
dcc::rcment operator, -- 39, 70,

112
default action 5, 9, 21, 187
default field separator 5, 24
default initialization 12-13, 35,

38, 45, 50-51' 54, 68, 181
delete statement 52
delimiters, balanced 77, 195
dependency description,

makefile 175
dependency graph 176
depth-first search algorithm 172,

177
derived table 106
df s function 173
divide and conquer v, 89, 110,

121, 123-124, 130, 160, 184,
202

do statement 49
dynamic regular expression 40,

101, 184

e, computation of 39
echo program 63
egrep command 59, 181, 184,

186
else, semicolon before 47
emp.data file 1
empty statement 50, 188
END, multiple BEGIN and 23, 169
end of input, SO at 13
END pattern 11, 23, 49
error file, standard 59
error function 118, 149, 178
error messages, printing 59
error, syntax 4
escape sequence 31, 35, 191
escape sequences, table of 31
examples, regular expression 30
examples, table of print£ 57
excc::utable file 65
exit statement 49
exit status 50, 64
exp function 39
exponential notation 35
exponentiation operator, " 15, 36,

46
expression, ? : conditional 37, 68
expression, assignment 39, 127
expression grammar 145
expression, value of comparison

37
expression, value of logical 37
expressions, field 36
expressions, primary 34
expressions, summary of 37

Feldman, S. I. 179
field expressions 36
field, Sn 5, 35
field, nonexistent 36, 45, 192
field program 66
field separator, default 5, 24
field separator, input 24, 35, 39,

60
field separator, newline as 61,

83-84
field separator, output 6, 35, 39,

55-56

THE A WK PROGRAMMING LANGUAGE

field separator, regular expression
52, 60, 80, 135

field variables 35
fields, named I 02, I 07
file, capi tala 102
file, countries 22
file, /dev/tty 59
file, emp.data I
file, executable 65
file, standard error 59
file, standard input 59, 66
file, standard output 5, 56
file updating 175
filename, - standard input 64,

116
FILENAME variable 33, 35-36,

81, 103
fixed-field input 72
floating-point number, regular

expression for 30, 40
floating-point precision 35, 191
Floyd, R. W. 162, 198
fmt program 120
fmt. just program 202
FNR variable 33, 35-36, 61
for ... in statement 51
for(;;) infinite loop 49, 113
for statement 16, 49
form letters 1 00
form of awk program 2, 21, 187
form1 program 91
form2 program 92
form3 program 94
form4 program 96
formal parameters 54
format, program II, 22, 34, 47,

53, 188
formatting, table 95
form.gen program 101
Forth language 142
Fraser, C. W. vi
FS variable 24, 35-36, 52, 60, 83,

135, 187
function arguments 54
function, aspli t 81
function, atan2 39
function, check I 55
function, choose 112
function, cos 39
function, daynum 194
function definition 53, 187
function, dfs 173
function~ error 118, 149, 178
function, exp 39
function, getline 61, 182, 188
function, gsub 42, 71, 101, 119,

122, 182
function, heapify 163, 165
function, hsort 165
function, index 41
function, int 39-40
function, isort 154
function, length 13-14
function, log 39
function, match 35, 41, 149, 182,

189, 196
function, max 53
function, numtowords 76, 194
function, permute 199
function, prefix lOS
function, qsort 161
function, rand 40, Ill
function, randint Ill

function, randlet 112
function, recursive 54, 71, 76,

liS, 160
function, sin 39
function, split 41, 52-53, 76,

80, 84, 192
function, sprint£ 42, 76, 88,

189
function, sqrt 39
function, srand 40, Ill
function, sub 42, 182
function, subset 109
function, substr 43, 72
function, suffix lOS
function, system 59, 64
function, unget 1 OS
function with counters, isort

158
functions, summary of arithmetic

190
functions, summary of string 190
functions, table of arithmetic 39
functions, table of string 42
functions, user-defined 53, 182,

187

generation, program v, 79, 121,
167

generator, lex lexical analyzer
152, 181, 186

generator, yacc parser 152, 175
getline error return 61-62
getline forms, table of 62
getline function 61, 182, 188
getline, side-effects of 61
global variables 54, 116
grammar, arithmetic expression

145
grammar, awk 148
grammar, context-free 113, 145,

148
grap language 139, 152
graph, constraint 170
graph cycle 171, 173-174, 177
graph, dependency 176
graph language 135
graph program 137
grep command v, 181, 184
Griswold, M. 186
Griswold, R. 186
Grosse, E. H. vi
gsub function 42, 71, 101, 119,

122, 182
Gusclla, R. vi

happiness 30
Hardin, R. H. 130
headers, records with 85
heapify function 163, 165
heapsort algorithm 162
heapsort performance 165
heapsort, profiling 168-169
Herbst, R. T. vi
histogram program 70, 193
Hoare, C. A. R. 160
Hopcroft, J. E. 179
hsort function 165

ICON language 186
if-else statement 14, 47
implementation limits 59, 61-62,

191
in operator 52, 192

INDEX 207

increment operator, ++ 39, 146,
158

index function 41
index, KWIC 122
indexing 124
indexing pipeline 129
infinite loop, for (; ;) 49, 113
infix notation 142, 145
info program 100
initialization, default 12-13, 35,

38, 45, S0-51, 54, 68, 181
initializing rand 111
input field separator 24, 35, 39,

60
input file, standard 59, 66
input filename, - standard 64,

116
input, fixed-field 72
input line SO S
input pipe, I 62, 76
input push back lOS, II 0
input, side-effects of 35
input-output, summary of 188
inserting commas 71
insertion sort algorithm I 53
insertion sort performance I 58
int function 39-40
integer, rounding to nearest 40
interactive test program 157
interactive testing I 56
interest program 1 S
isort function 154
isort function with counters

158
ix.collapse program 126
ix. format program 129
ix. 9enkey program 128
ix. rotate program 127
ix. sort 1 program 126
ix. sort2 program 128

join command 104
join, natural 103
join program 104
justification, text 98, 201

Kernighan, B. W. 66, 130, 152,
186

Kernighan, M. D. vi
Knuth, Donald Ervin 82, 179,

198
KWIC index 122
kwic program 123, 203

language, assembly 133
language features, new v, 79, 182
language, Forth 142
language, grap 139, 152
language, graph 135
language, ICON 186
language, pattern-directed 138,

140, 152, 156, 181
language, pic 139
language, Postscript 142
language processor model 131
language, q query 102, 107
language, query 99
language, REXX 186
language, SNOBOL4 SO, 182,

186
language, sortqen 140
leap year computation 194
leftmost longest match 42, 60, 80

208 THE A WK PROGRAMMING LANGUAGE

length function 13-14
letters, form I 00
lex lexical analyzer generator

152, 181, 186
lexical analysis 131, 133
limits, implementation 59, 61-62,

191
Linderman, J.P. vi
linear algorithm 157, 183
linear order 170
lines versus records 21, 60
little languages iv-v, 131, 152,

156, 159
local variables 54, 116, 182
log function 39
logarithm, computation of base-10

39
logical expression, value of 37
logical operators 10, 31, 37
logical operators, precedence of

32
long statements, continuing 15,

22, 188
lorder command 170
ls command 177
Lukasiewicz, J. 142

machine dependency 35-36,44-
45, 51, 183

make command 175
make program 178
make update algorithm 176
makefile dependency

description 175
makeprof program 167
manuscripts, cross-references in

120
Martin, R. L. vi
match function 35, 41, 149, 182,

189, 196
match, leftmost longest 42, 60, 80
match operator, - 25, 27, 31, 37,

40
max function 53
Mcilroy, M. D. vi, 130
metacharacters, regular expression

28, 191
Miller, W. 179
model, language processor 131
Moscovitz, H. S. vi
MS-DOS vi, 26
multidimensional arrays 52, 108,

114, 116, 182
multifile database 102
multiline records iv, 60·61, 82
multiple assignment 39
multiple BEGIN and END 23, 169
Myers, E. 179

n log n algorithm 162, 165
named fields I 02, I 07
names, rules for variable 35
name-value data 86
natural join 103
new language features v, 79, 182
newline as field separator 61,

83-84
newline character, \n 8, 31, 79
next statement 49
NF, side-effects on 36, 61
NF variable 6, 14, 35·36, 61
nm command 73
nm.format program 74

nonexistent field 36, 45, 192
nonmatch operator, 1- 25, 27,

31, 37,40
nonterminal symbol 113, 145
NOT operator, I 10, 31, 37
notation, exponential 35
notation, infix 142, 145
notation, reverse-Polish 142
NR variable 6, 12, 14, 35-36, 61
null string 13, 24, 42, 114, 192
number, coercion to 45
number or string 44
number, regular expression for

floating-point 30, 40
number to string coercion 25
number to string conversion 35,

44, 192
numbers to words, convert 76
numeric comparison 25-26, 44
numeric constant 35
numeric subscripts 52
numeric value of a string 45
numeric variables 44
nwntowords function 76, 194

OFMT variable 36, 45
OFS variable 35·36, 43, 55-56
one-liners 17, 181
operator,&&. AND 10, 31, 37,

158
operator, ""'assignment 38
operator, *"'assignment 38
operator, +"'assignment 38
operator, -a assignment 38
operator, /::assignment 38
operator, "c assignment 38
operator, .. assignment 38, 44
operator, >comparison 9
operator, >"' comparison 9
operator, "'"'comparison 9, 44
operator, -- decrement 39, 70,

112
operator, " exponentiation 15, 36,

46
operator, ++increment 39, 146,

158
operator, - match 25, 27, 31, 37,

40
operator, t- nonmatch 25, 27,

31, 37,40
operator, I NOT 10, 31, 37
operator, ::OR 10, 31, 37
operator, " remainder 36, 46
operator, concatenation 40, 43,

182
operator, in 52, 192
operators, arithmetic 36, 44
operators, assignment 38
operators, associativity of 46
operators, comparison 36
operators, logical 10, 31, 37
operators, precedence of 46
operators, precedence of regular

expression 30
operators, relational 25, 37
operators, summary of 190
operators, table of arithmetic 46
operators, table of comparison 25
option, -f 4-5, 63, 65, 187
option, -F 60, 63, 187
OR operator, II 10, 31, 37
ORS variable 36, 55-56, 83
output field separator 6, 35, 39,

55-56

output file, standard 5, 56
outp11t into pipes 8, 58

INDEX

output record separator 6, 55-56,
83

output redirection, > 56, 58, 188
output redirection, » 56, 58, 188
output redirection, I 58, 188
output statements, summary of

55

p 12check program 77
parameter, array 54
parameter list 53, 116
parameter, scalar 54
parameters, formal 54
parenthesis-free notation 142
Parnas, D. L. 123, 130
parser generator. yacc 152, 175
parsing, recursive-descent 145,

147-148
partial order 170
partitioning step, quicksort 160
passwd program 78
password file, check 78
pattern, BEGIN ll, 23, 63
pattern, END II, 23,49
pattern, range 32, 85, 187
pattern, string-matching 26
pattern-action cycle 3, 21
pattern-action statement iii, 2,

21, 34, 53, 187
pattern-directed language 138,

140, 152, 156, 181
patterns, compound 31
patterns, summary of 23, 187
patterns, summary of string-

matching 27
patterns, table of 33
percent program 70
performance, heapsort 165
performance, insertion sort 1 58
performance measurements, table

of 183
performance, quicksort 162
permute function 199
pic language 139
Pike, R. 66
pipe, I input 62, 76
pipeline, indexing 129
pipes, output into 8, 58
Poage, J. 186
Polish notation 142
Polonsky, I. 186
Postscript language 142
pr command 175
prchecks program 7 5
precedence of logical operators 32
precedence of operators 46
precedence of regular expression

operators 30
precis1on, floating-point 35, 191
predecessor node 170
prefix function 105
prep 1 program 90
prep2 program 91
prep3 program 93
primary expressions 34
print >file 90, 188
print statement 5, 55
print£, "" in 79
print£ examples, table of 57
print£ specifications, summary

of 189

THE A WK PROGRAMMING LANGUAGE

printf specifications, table of
51

printf statement 7, 24, 56, 98
printing a blank line II, 55
printing checks 74
printing error messages 59
printprof program 168
priority queue 162
processor, #include 62, 64
profiling 167
profiling heapsort 168-169
program, addcomma 72, 194
program, ari th 117
program, asm 134, 203
program, a wit. parser 149
program, batch sort test I 55
program, bridge 199
program, bundle 81
program, calc1 143
program, calc2 144
program, calc3 146
program, check 1 87
program, checlt2 87
program, checlt3 88
program, checkgen 79
program, cliche 113
program, colcheck 77
program, compat 80
program, echo 63
program, field 66
program, fmt 120
program, fmt. just 202
program, form1 91
program, form2 92
program, form3 94
program, form4 96
program format II, 22, 34, 47,

53, 188
program, form.gen 101
program generation v, 79, 121,

167
program, graph 137
program, histogram 70, 193
program, info 100
program, interest I 5
program, ix. collapse 126
program, ix.format 129
program, ix. genkey 128
program, ix.rotate 127
program, ix. sort 1 126
program, ix. sort2 128
program, join I 04
program, kwic 123, 203
program, make 178
program, makeprof 167
program, nm. format 74
program, p 12check 77
program, passwd 78
program, percent 70
program, prchecks 75
program, prep 1 90
program, prep2 91
program, prep3 93
program, printprof 168
program, qawlt 109
program, quiz 118
program, rtsort 174
program, sentgen II 5, 200·201
program, seq 64
program, sortgen 141
program, sum 1 68
program, sum2 68
program, sum3 69

program, sumcomma 71
program, table 98
program, table1 196
program, test framework I 59
program, transpose 204
program, tsort 172
program, unbundle 82
program, word count 14, 119
program, wordfreq 119
program, xref 122
prompt character 2
prototyping iii, v, 78, I 52, 185
pseudo-code iv, 153
ptx command 123
pushback, input 105, 110

q query language I 02, I 07
qawk program I 09
qawlt query processor 108
qsort function 161
quadratic algorithm I 57, 162,

183
query language 99
queue 171
queue, priority 162
quicksort algorithm 160
quicksort partitioning step 160
quicksort performance 162
quiz program 118
quotes, '' 2, 4-5, 65, 100
quoting in regular expressions

29-30, 41, 43

rand function 40, Ill
rand, initializing Ill
randint function Ill
randlet function 112
random sentences 113
range pattern 32, 85, 187
record separator, output 6, 55·56,

83
record variable, $0 5, 35
records, lines versus 21, 60
records, multiline iv, 60-61, 82
records with headers 85
recursion elimination 200, 204
recursive function 54, 71, 76, liS,

160
recursive-descent parsing 145,

147-148
redirection, > output 56, 58, 188
redirection, » output 56, 58, 188
redirection, I output 58, 188
regular expression, . 28
regular expression, $ 28, 119
regular expression, A 28, 119
regular expression, () 29
regular expression, [. . .] 29
regular expression, r .. .J 29
regular expression, I 29, 32
regular expression, • 30
regular expression, + 30
regular expression, ? 30
regular expression character class

29
regular expression, concatenation

in 29
regular expression, dynamic 40,

101, 184
regular expression examples 30
regular expression field separator

52, 60, so. 135
regular expression for floating

point number 30, 40

INDEX 209

regular expression metacharacters
28, 191

regular expression operators,
precedence of 30

regular expressions in data 118
regular expressions, quoting in

29-30, 41, 43
regular expressions, strings as 40
regular expressions, summary of

28, 191
regular expressions, table of 32
relation, universal 107
relational databases iv, 102
relational operators 25, 37
relfile database description

106
remainder operator, " 36, 46
report generation 89
return statement 53
reverse input line order 50
reverse program 16-17
reverse-Polish notation 142
REXX language 186
Ritchie, D. M. 66, 186
RLENGTH variable 35-36, 41
rounding to nearest integer 40
RS variable 36, 60, 83-84
RSTART variable 35-36, 41, 189
rtsort program 174
rules for variable names 35
running an awk program 3
running time of awk programs

183

scaffolding 153, 156, 179
scalar parameter 54
Schmitt, G. vi
scientific notation 35
Scribe formatter 124
sed command v, 181, 184, 186
self-identifying data 86
semicolon II, 22, 34, 47, 53, 187
semicolon as empty statement 50
semicolon before else 47
sentence generation 114
sentences, random 113
sentgen program II 5, 200·201
separator, blank line 83
separator, default field 5, 24
separator, input field 24, 35, 39,

60
separator, output field 6, 35, 39,

55-56
separator, output record 6, 55·56,

83
seq program 64
Sethi, R. 130, 152, 186
shell command interpreter 4, 65,

99
side-effects of assignment 43
side-effects of getline 61
side-effects of input 35
side-effects of sub 43
side-effects of test 52, 192
side-effects on SO 36, 43
side-effects on NF 36, 61
sin function 39
SNOBOL41anguage 50, 182, 186
sort command 8, 58, 84, 90
sort key 91, 127, 140
sort options 90, 94, 124, 126,

140
sort options, avoiding 91, 140

210 THE A WK PROGRAMMING LANGUAGE

sort programs, testing 155
sort test program, batch 155
sortgen language 140
sortgen program 141
sorting address list 84
sorting dates 72
sorting, topological 170
split function 41, 52-53, 76,

80, 84, 192
sprint£ function 42, 76, 88,

189
sqrt function 39
srand function 40, Ill
stack 142, 200, 204
standard error file 59
standard input file 59, 66
standard input filename, - 64,

116
standard output file 5, 56
statement, break 49
statement, close 59, 82
statement, continue 49
statement, delete 52
statement, do 49
statement, empty 50, 188
statement, exit 49
statement, for 16, 49
statement, for ... in 51
statement, if-else 14, 47
statement, next 49
statement, pattern-action iii, 2,

21, 34, 53, 187
statement, print 5, 55
statement, print£ 7, 24, 56,98
statement, return 53
statement, while 15, 47
statements, continuing long I 5,

22, 188
statements, summary of control

flow 48
statements, summary of output

55
status return 50, 64
string, coercion to 45
string comparison 25-26, 44, 184
string concatenation 13, 40, 43,

47, 56, 101, 182, 184
string constant, " ... • 7, 24, 35, 51
string functions, summary of 190
string functions, table of 42
string, null 13, 24, 42, 114, 192
string, numeric value of a 45
string or number 44
string to number coercion 25
string to number conversion 35,

44,192
string variables 12, 44
string-matching pattern 26
string-matching patterns,

summary of 27
strings as regular expressions 40
sub function 42, 182
sub, side-effects of 43
subscripts, array 50·52
subscripts, numeric 52
SUBSEP variable 36, 53
subset function 109
substitution, &. in 43, 72, 189
substr function 43, 72
substring 24
successor node 170
successor-list data structure 171
suffix function 105

sum 1 program 68
sum2 program 68
sum3 program 69
sumcomma program 71
summary of actions 34, 188
summary of arithmetic functions

190
summary of control-flow

statements 48
summary of expressions 37
summary of input-output 188
summary of operators 190
summary of output statements 55
summary of patterns 23, 187
summary of print£

specifications 189
summary of regular expressions

28, 191
summary of string functions 190
summary of string-matching

patterns 27
summing columns 67
Swartwout, D. vi
symbol table 131, 134, 152
syntax error 4
system function 59,64

tab character, \t 15, 24, 31
table, base 106
table, database 103
table, derived 1 06
table formatting 95
table of arithmetic functions 39
table of arithmetic operators 46
table of assembler instructions

132
table of built-in variables 36
table of comparison operators 25
table of escape sequences 31
table of getline forms 62
table of patterns 33
table of performance

measurements 183
table of print£ examples 57
table of print£ specifications 57
table of regular expressions 32
table of string functions 42
table program 98
table, symbol 131, 134, 152
table 1 program 196
tbl command 95
terminal symbol 113, 145
test framework program 159
test program, interactive 157
test, side-effects of 52, 192
testing, boundary condition 155
testing, interactive 156
testing sort programs 155
TEX formatter 120, 124
text justification 98, 201
timing tests 183
Toolchest vi
topological sort algorithm 171
topological sorting 170
tr command 201
translator model 131
transpose program 204
tree, binary 163
Trickey, H. W. vi
troff command 120, 124-125,

127, 139
tsort program 172

INDEX

Ullman, J. D. Ito, 152, 179
unbundle program 82
underscore, 35
unget funcfion 105
uninitialized variables 5 I, 58
universal relation I 07
update algorithm, make 176
updating, file 175
user-defined functions 53, 182,

187

value of a string, numeric 45
value of comparison expression

37
value of logical expression 37
van Eick, P. vi
Van Wyk, C. J. vi
variable, SO record 5, 35
variable, ARGC 36, 63, 189
variable, ARGV 36, 63-65, 116,

189
variable assignment, command

line 63
variable, FILENAME 33, 35·36,

81, 103
variable, FNR 33, 35-36, 61
variable, FS 24, 35-36, 52, 60, 83,

135, 187
variable names, rules for 35
variable, NF 6, 14, 35-36, 61
variable, NR 6, 12, 14, 35-36, 61
variable, OFMT 36, 45
variable, OFS 35-36, 43, 55-56
variable, ORS 36, 55-56, 83
variable, RLENGTH 35-36, 41
variable, RS 36, 60, 83-84
variable, RSTART 35-36,41, 189
variable, SUBSEP 36, 53
variables, field 35
variables, global 54, 116
variables, local 54, 116, 182
variables, numeric 44
variables, string 12, 44
variables, table of built-in 36
variables, uninitialized 51, 58

we command 183
while statement 15,47
who command 62
wild-card characters 26
Williams, J. W. J. 162
word count program 14, 119
wordfreq program 119
words, convert numbers to 76

xref program 122

yacc parser generator 152, 175
Yannakakis, M. vi

Please send me information about how to obtain source code or software for the
AWK programming language for the following environment:

0 UNIX
0 MS-DOS
0 Other Please specify--------------------
Name __________________________ __

Affiliation __________________________ _

StreetAddr~s--------------------------
City __________________ State ___ Zip ___ _

Telephone Hours----------

A
~

Addison-W~ley Publishing Company
Reading, Massachusetts 01867

(617) 944-3700

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 11 READING, MA.

Postage Will Be Paid By Addressee

ADDISON-WESLEY
PUBLISHING COMPANY, INC.
Attn: D. Descoteaux
Reading, Massachusetts U.S.A. 01867-9984

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

TheA WK.
Programming~

Language
ALFRED v AHO . BRIAN w KERNIGHAN • PETER J. WEINBERGER

AT&T Bell Laboratories

O riginally developed by Alfred Aho, Brian Kernighan, and Peter
Weinberger in 1977, AWK is a pattern-matching language for writing
short programs to perform common data-manipulation tasks. In 1985,
a new version of the language was developed, incorporating additional
features such as multiple input files, dynamic regular expressions, and
user-defined functions. This new version is available for both UNIX
and MS-DOS.

This is the first book on AWK.It begins with a tutorial that shows how
easy AWK is to use. The tutorial is followed by a comprehensive man
ual for the new version of AWK.

Subsequent chapters illustrate the language by a range of useful appli
cations, such as:

• Retrieving, transforming, reducing, and validating data
• Managing small , personal databases
• Text processing
• Littlelanguages
• Experimenting with algorithms

The examples illustrate the book's three themes: showing how to
use AWK well, demonstrating AWK's versatility, and explaining how
common computing operations are done. In addition, the book con
tains two appendixes: a summary of the language, and answers to
selected exercises.

PA 1529

ISBN 0-201- 07981-X
Addison-Wesley Publishing Company

	Front Cover
	Preface
	Contents
	Chapter 1 An AWK Tutorial
	Chapter 2 The AWK Language
	Chapter 3 Data Processing
	Chapter 4 Reports and Databases
	Chapter 5 Processing Words
	Chapter 6 Little Languages
	Chapter 7 Experiments with Algorithms
	Chapter 8 Epliog
	Appendix A AWK Summary
	Appendix B Answers to Selected Exercises
	Index
	Back Cover

