
























































































































































































































































































































































































































B ANSWERS TO SELECTED EXERCISES 

Exercise 3-1. An easy way to ignore blank lines is to replace the first line of sum3 by 
nfld == 0 && NF > 0 { nfld = NF 

0 

Exercise 3-3. Without the test, sums of nonnumeric columns get accumulated, but not 
printed. Having the test avoids the possibility that something will go wrong (like over
flow) while accumulating the useless sums. There is no significant effect on speed. o 

Exercise 3-4. This problem is easily handled with an associative array: 
{ total($1] += $2 } 

END { for (x in total) print x, total[x] : "sort" } 

0 

Exercise 3-5. Suppose there cannot be more than 25 stars in a line. By setting max to 
25, the following program leaves the data unchanged if the longest line would fit, and 

./ otherwise scales the lines so the longest is 25 long. The new array y is used to hold the 
scaled lengths so that the x counts are still correct. 

0 

x[int($1/10)]++ } 
END max = MAXSTARS = 25 

for (i = 0; i <= 10; i++) 
if (x[i] > max) 

max = x[i] 
for (i = 0; i <= 10; i++) 

y[i] = x[i]/max * MAXSTARS 
for (i = 0; i < 10; i++) 

print£('' "2d- "2d: %3d %s\n", 
10•i, 10+i+9, x[i], rep(y[i],"•")) 

print£("100: "3d "s\n", x[10], rep(y[10],"•")) 

function rep(n,s, t) 
while (n-- > 0) 

t = t s 
return t 

# return string of n s's 

Exercise 3-6. This requires two passes over the data, one to determine the range of the 
buckets and one to assign items to them. o 

193 
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Exercise 3-7. The problem of where commas go in numbers is not clearly defined. 
Despite the canons of software engineering, it is common to have to solve a problem 
without knowing exactly what it is. Here are two possible answers. The following pro
gram sums integers that have commas in the conventional places: 

/A[+-]?[0-9][0-9]?[0-9]?(,[0-9][0-9][0-9])•$/ { 
gsub(/ ,/, "") 
sum += SO 
next 

print "bad format:", SO ) 
END print sum } 

Decimal numbers usually don't have commas after the decimal point. The program 
/A[+-]?[0-9][0-9]?[0-9]?(,[0-9][0-9][0-9])•([.)[0-9]•)?$/ 

gsub ( / t / t II II ) 

sum += SO 
next 

print "bad format:", $0} 
END print sum } 

sums decimal numbers that have commas and a digit before the decimal point. o 

Exercise 3-8. The function daynwn ( y, m, d) returns the number of days, counting 
from January 1, 1901. Dates are written as year month day, e.g., 2001 4 1. February 
has 29 days in years divisible by 4, except that it has 28 days in years divisible by 100 
but not by 400. Thus, 1900 and 2100 are not leap years, but 2000 is. 

function daynum(y, m, d, days, i, n) { # 1 == Jan 1, 1901 
split("31 28 31 30 31 30 31 31 30 31 30 31", days) 
# 365 days a year, plus one for each leap year 
n = (y-1901) * 365 + int((y-1901)/4) 
if (y % 4 == 0) # leap year from 1901 to 2099 

days[2]++ 
for (i = 1; i < m; i++) 

n += days[i) 
return n + d 

{ print daynum($1, S2, $3) } 

This program is correct only between 1901 and 2099; it does not check the validity of its 
input. o 

Exercise 3-11. One way to modify nwntowords is as follows: 
function numtowords(n, cents, dols, s) { # n has 2 decimal places 

cents = substr(n, length(n)-1, 2) 
dols = substr(n, 1, length(n)-3) 
if (dols == 0) 

s = "ze~o dollars and " cents " cents exactly11 

else 
s intowords(dols) " dollars and 11 cents 11 cents exactly" 

sub(/Aone dollars/, 11 one dollar 11
, s) 

g'SUb(/ +/, II 
11

, S) 
return s 

The sub command fixes "one dollars," and the gsub removes multiple blanks, even if 
nothing is wrong. This is easier than testing whether any changes are needed. 0 
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Exercise 3-13. For simplicity. suppose the pairs are aa and bb, cc and dd, ee. and 
ff. As in the text. assume that none of these are allowed to nest or overlap. 

BEGIN { 

} 

expects[ "aa"] "bb" 
expects[ "cc"] "dd" 
expects [ "ee"] "ff" 

/"(aalcclee)/ { 
if (p I= 1111) 

} 

print "line", NR, ": expected " p 
p = expects[substr($0, 1, 2)] 

/"(bblddlff)/ { 

END 

x = substr($0, 1, 2) 
if (p I= x) { 

p 

print "line", NR, ": saw" x 
if (p) 

print ", expected 11
, p 

if (p I= II") 
print "at end, missing", p 

The variable p encodes the state by recording what matching delimiter is expected. The 
program takes advantage of the fact that all the opening delimiters are the same length. 
An alternative would be to require that the delimiters always be $1. o 

Exercise 3-14. Choose some marker, for instance =, that cannot be a legal pattern. 
Then 

BEGIN { FS = "'\t" } 
1"=1 { print substr($0, 2); next } 
{ printf("%s {\n\tprintf(\"line %%d, %s: %%s'\\n'\'1 ,NR,$0) }\n", 

$1 t $2) 

prints the rest of lines that start with the marker. 0 

Exercise 4-1. One possibility is to give the date explicitly on the command line: 

awk -f prep3 pass=1 countries pass=2 countries I 
awk -f form3 date='January 1, 1988' 

The variable date is then set on the command line. and its assignment can be left out of 
the BEGIN action of form3. As usual, some sort of quoting is needed for command-line 
arguments containing blanks. Another possibility is to pipe the output of the date com
mand into the variable, as suggested in Section 3.1. o 

Exercise 4-3. Before looking at our solution, check to see what yours does on numbers 
without decimal points. For brevity our solution just does a single column. We replace 
nwid by two numbers, lwid and rwid. lwid accumulates the length of the number to 
the left of the decimal point, and rwid counts the number of digits to the right of the 
decimal point and the decimal point itself. These are computed using the patterns left 
and right. The space needed for numbers is then lwid+rwid, which may be bigger 
than the length of the longest number. so the calculation for wid takes this into account. 
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# table1 - single column formatter 
# input: one column of strings and decimal numbers 
# output: aligned column 

BEGIN { 
blanks = sprintf("%100s", " ") 
number = ""[+-]?( [0-9]+[. ]?[0-91* I [. 1 [0-9]+)S'' 
left = ""[+-1?[0-9]*" 
right= "[.)[0-9]*" 

row[NR] = S1 
if ($1 - number) 

APPENDIX 8 

match(S1, left) #matches the empty string, so RLENGTH>=O 
lwid = max(lwid, RLENGTH) 

END 

if ( lmatch(S1, right)) 
RLENGTH = 0 

rwid = max(rwid, RLENGTH) 
wid max(wid, lwid + rwid) 

else 
wid max(wid, length($1)) 

for (r = 1; r <= NR; r++) { 
if (row[r] - number) 

print£("%" wid "s\n", numjust(row[r])) 
else 

print£("%-" wid "s\n", row[r]) 

function max(x, y) { return (x > y) ? x y } 

function numjust(s) { # position s 
if ( lmatch(s, right)) 

RLENGTH = 0 
returns substr(blanks, 1, int(rwid-RLENGTH+(wid-(lwid+rwid))/2)) 

Each number that doesn't use all of lwid has to be shifted left, so there is a slightly 
more elaborate calculation in numjust. D 

Exercise 4-5. 

awk ' 
BEGIN { FS = "\t"; pat= ARGV[1]; ARGV[1] 
$1 - pat { 

printf("%s:\n", S1) 
printf("\t%d million people\n", $3) 
printf("\t%.3£ million sq. mi.\n", $2/1000) 
printf("\t%.1£ people per sq. mi.\n", 1000*$3/$2) 

' "$1" <countries 

is one way. 
Another, using var-text on the command line instead of ARGV, is 
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0 

awk • 
BEGIN { FS "' "\t" } 
S1 - pat { 

printf(""s:\n", $1) 
printf("\t"d million people\n", $3) 
print£ ( "\t%. 3£ million sq. mi. \n", $2/1000) 
print£( "\t%.1£ people per sq. mi. \n", 1000*$3/$2) 

• pat::"$1" <countries 

Exercise 4-6. To check that the files are sorted, keep track of the last record read from 
each input, and compare it with the result of getline in getone. 0 

Exercise 4-10. Replace the loop in doquery that calls system with one that concaten
ates all the commands into one string x, for instance 

for (j "' 1; j <:: ncmd(i]; j++) x"' x cmd[i, j] "\n" 

and then use x in the call to system. If x is made a local variable in doquery, it will 
be properly initialized on each call. o 

Exercise 4-11. Here is a partial solution that remembers which derived files have been 
computed during one execution of qawk, and avoids recomputing them. 

function doquery(s, i,j,x) { 
for (i in qattr) # clean up for next query 

delete qattr(i] 
query "' s # put $names in query into qattr, without S 
while (match(s, /\$(A-Za-z]+/)) { 

qattr[substr(s, RSTART+1, RLENGTH-1)] :: 1 
s "' substr(s, RSTART+RLENGTH+1) 

for (i"' 1; i <:: nrel && lsubset(qattr, attr, i); ) 
i++ 

if (i > nrel) # didn't find a table with all attributes 
missing(qattr) 

else { # table i contains attributes in query 
for (j in qattr) # create awk program 

gsub("\\$" j, "S" attr[i,j], query) 
if ( lexists[i] && ncmd(i] > 0) { 

for (j"' 1; j <= ncmd[i]; j++) 
x "' x cmd[i, j] "\n" 

print "executing\n" x # for debugging 
if (system(x) I= 0) { # create table i 

print "command failed, query skipped\n", x 
return 

exists[i]++ 

awkcmd = sprintf("awk -F'\t' '%s' %s", query, relname[i]) 
printf("query: %s\n", awkcmd) #for debugging 
system(awkcmd) 

The array exists remembers which derived files have been computed. This version of 
doquery also includes the answer to the last problem. 0 

Exercise 4-12. The simplest answer is to change qawk to begin 
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BEGIN { readrel(nrelfile"); RS = nn } 

Then a query consists of everything up to a blank line. Regardless of the mechanism, 
queries have to turn into legal awk programs. 0 

Exercise 5-l. The "random" numbers are of course completely deterministic: knowing 
the seed and the algorithm fixes the sequence of values. There are many properties, 
however, that the sequence shares with a random sequence. A complete discussion may 
be found in Knuth's The Art of Computer Programming, Volume 2. 0 

Exercise 5-2. This code generates a random set of k distinct integers between 1 and n; it 
is due to R. W. Floyd: 

0 

# print k distinct random inteqers between 1 and n 

{ random($1, $2) } 

function random(k, n, A, i, r) 
for (i = n-k+1; i <= n; i++) 

((r = randint(i)) in A) ? A[i] A[r] 
for (i in A) 

print i 

function randint(n) {return int(n•rand())+1 } 

Exercise 5-3. The problem is to generate random bridge hands of the form: 

NORTH 
S: 10 9 6 4 
H: 8 7 
D: J 10 6 
C: 10 8 5 3 

WEST EAST 
s: K 8 7 3 s: A J 5 
H: K Q 4 3 2 H: J 
D: 8 7 D: A K Q 9 2 
C: A J C: K Q 6 2 

SOUTH 
S: Q 2 
H: A 10 9 6 5 
D: 5 4 3 
C: 9 7 4 

The program below generates a random permutation of the integers 1 through 52, which 
is put into the array deck. The array is sorted into four sequences of thirteen integers 
each. Each sequence represents a bridge hand; the integer 52 corresponds to the ace of 
spades, 51 to the king of spades, 1 to the deuce of clubs. 

The function permute ( k, n) uses Floyd's technique from the previous exercise to 
generate a random permutation of length k of integers between 1 and n. The function 
sort ( x, y) uses a method called insertion sort, discussed in Section 7.1, to sort the ele· 
ments in deck[x •• y]. Finally, the function prhands formats and prints the four 
hands in the manner shown above. 
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0 

# bridge - generate random bridge hands 

BEGIN { split(permute(52,52), deck) #generate a random deck 
sort(1,13); sort(14,26); sort(27,39); sort(40,52) #sort hands 
prhands() #format and print the four hands 

function permute(k, n, 
srand(); p ="" 

i, p, r) 

for (i = n-k+1; i <= n; i++) 

# generate a random permutation 
# of k integers between 1 and n 

if (p- " " (r = int(i•rand())+1) " " ) 
sub ( 11 11 r " " , " " r " " i " " , p) # put i after r in p 

else p = " " r p # put r at beginning of p 
return p 

function sort(left,right, i,j,t) {#sort hand in deck[left .. right] 
for (i = left+1; i <= right; i++) 

for (j = i; j > left && deck[j-1] < deck[j]; j--) 
t = deck[j-1]; deck[j-1] = deck[j]; deck[j] = t 

function prhands() { 
b = sprintf("%20s", " "); b40 
card = 1 

# print the four hands 
sprintf("%40s", " ") 

# global index into deck 
suit~(13); print b" NORTH" 
print b spds; print b hrts; print b dnds; print b clbs 
suits(26) #create the west hand from deck[14 .. 26] 
ws spds substr(b40, 1, 40 length(spds)) 
wh hrts substr(b40, 1, 40 length(hrts)) 
wd dnds substr(b40, 1, 40- length(dnds)) 
we clbs substr(b40, 1, 40- length(clbs)) 
suits(39); print" WEST" sprintf("%36s", " ") "EAST" 
print ws spds; print wh hrts; print wd dnds; print we clbs 
suits(52); print b" SOUTH" 
print b spds; print b hrts; print b dnds; print b clbs 

function suits(j) { 
for (spds = "S:"; 

spds = spds " 
for (hrts = "H:"; 

hrts = hrts " 
for (dnds = "D:"; 

dnds = dnds " 

#collect suits of hand in deck[j-12 .. j] 
deck[card] > 39 && card <= j; card++) 
"fvcard(deck[card]) 
deck[card] > 26 && card <= j; card++) 
" fvcard(deck[card)) 
deck[card] > 13 && card <= j; card++) 
" fvcard(deck[card]) 

for (clbs = "C:"; card <= j; card++) 
clbs = clbs" " fvcard(deck[card]) 

function fvcard(i) { 
if (i % 13 == 0) return "A" 
else if (i % 13 12) return "K" 
else if (i% 13 == 11) return "Q" 
else if (i % 13 == 10) return "J" 
else return (i % 13) + 1 

# compute face value of card i 
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Exercise 5-5. Doing an intelligent job on this is hard. Simplest is to keep track of how 
many characters have been put out, and to stop with an error message. when there are 
too many. Slightly more complex would be to try. in gen, only to derive the empty 
string or terminals. once the derivation becomes too long. Unfortunately. this won't 
work on every grammar every time. One guaranteed method requires knowing the short
est output each nonterminal can produce, and forcing that when the derivation becomes 
too long. This requires substantial processing of the grammar, and some specialized 
knowledge. o 

Exercise 5-6. We add a probability to the end of each production. These probabilities 
are first read into the array rhsprob. After the grammar has been read, rhsprob is 
changed so that it represents the probability of this or any previous production, rather 
than this production. This makes the test in gen a little simpler; otherwise the probabil
ities would have to be be summed over and over again. 

0 

# sentgen1 - random sentence generator with probabilities 
# input: grammar file; sequence of nonterminals 
# output: random sentences generated by the grammar 

BEGIN { # read rules from grammar file 
while (getline < "test-gram" > 0) 

if ($2 == "->") { 
i = ++lhs[$1] 
rhsprob[$1, i] = SNF 
rhscnt[$1, i] = NF-3 
for (j = 3; j < NF; j++) 

rhslist[$1, i, j-2] = 
else 

Sj 

# count lhs 
# 0 <= probability <= 1 
# how many in rhs 
# record them 

print "illegal production: " SO 
for (sym in lhs) 

for (i = 2; i <= lhs[sym]; i++) 
rhsprob[sym, i] += rhsprob[sym, i-11 

if ($1 in lhs) { # nonterminal to expand 
gen($1) 
printf( "\n") 

else 
print "unknown nonterminal: 11 SO 

function gen(sym, i, j) { 
if (sym in lhs) { # a nonterminal 

j =rand() #random production 
for (i 1; i <= lhs[sym] && j > rhsprob[sym, i]; i++) 

for (j 1; j <= rhscnt[sym, i]; j++) #expand rhs's 
gen(rhslist[sym, i, j]) 

else 
printf("%s ", sym) 

Exercise 5-7. The standard approach is to replace recursion by a stack managed by the 
user. When expanding the right-hand side of a production. the code puts it on the stack 
backwards, so the output comes out in the right order. 
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0 

# sentgen2 - random sentence generator (nonrecursive) 
# input: grammar file; sequence of nonterminals 
# output: random sentences generated by the grammar 

BEGIN { # read rules from grammar file 
while (getline < "grammar" > 0) 

if ($2 == "->") { 
i = ++lhs[$1] 
rhscnt[$1, i] = NF-2 
for (j = 3; j <= NF; j++) 

rhslist[S1, i, j-2] = Sj 
else 

# count lhs 
# how many in rhs 
# record them 

print "illegal production: " SO 

if ($1 in lhs) # nonterminal to expand 
push( $1) 
gen() 
printf{"\n") 

else 
print "unknown nonterminal: " SO 

function gen( i, j) 
while (stp >= 1) { 

sym = pop() 
if (sym in lhs) { # a nonterminal 

i = int(lhs[sym] *rand()) + 1 #random production 
for (j = rhscnt[sym, i]; j >= 1; j--) #expand rhs's 

push(rhslist[sym, i, j]) 
else 

print£ ( "%s " , sym) 

function push(s) { stack[++stp] = s } 

function pop() {return stack[stp--] } 

Exercise 5-9. The easiest solution is to create an initial random permutation of the 
integers from I to nq, then ask the questions in that order. 0 

Exercise 5-10. The cleanest way to do case conversion in awk is with an array that 
maps each letter; this is pretty clumsy, however, so if you have a choice it's better to use 
a program like the Unix command tr. o 

Exercise 5-13. We accumulate the words into an array. If there are cnt words to be 
printed on a line, then there are cnt-1 holes to fill with spaces. If there are n spaces 
needed, each hole should have an average of nl ( cnt-1 ) spaces. For each word, the 
program computes this number, then decrements the number of holes and spaces. If the 
extra blanks do not distribute evenly, the surplus ones are spread alternately from the 
left and from the right on successive lines, to avoid "rivers" of white space. 
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I fmt.just- formatter with right justification 

BEGIN 
1.1 
/"$/ 

blanks = sprintf("%60s", " ") } 
for {i = 1; i <= NF; i++) addword{Si) 
printline("no"); print"" } 
printline( "no") } END 

function addword(w) { 
if {cnt + size + length(w) > 60) 

printline("yes") 
line[++cnt] = w 
size += length(w) 

function printline(f, i, nb, nsp, holes) { 
if ( f == "no" I I cnt 1) { 

for (i = 1; i <= cnt; i++) 
printf("%s%s", line[i], i < cnt ? : "\n") 

else if {cnt > 1) { 

APPENDIX 8 

dir = 1 - dir # alternate side for extra blanks 
nb = 60 - size # number of blanks needed 
holes = cnt - 1 # holes 
for (i = 1; holes > 0; i++) { 

nsp = int((nb-dir) I holes) + dir 
printf("%s%s", line[i], substr(blanks, 1, nsp)) 
nb -= nsp 
holes--

print line[cnt] 

size = cnt = 0 

A "no" argument to printline avoids right-justifying the last line of a paragraph. D 

Exercise 5-15. It depends on whether the defective name appears anywhere else in the 
document. If it does, it will be erroneously substituted away. D 

Exercise 5-16. 
/"\.#/ 

END 

D 

Exercise 5-18. 
/"\.#/ 

print£("{ gsub(l%s/, \"%d\") }\n", S2, ++count[S1]) 
if (saw($2]) 

print NR ": redefinition of", $2, "from line", saw($2] 
saw[$2] = NR 

print£ ("I/" [. ]#/\n") 

s[$2] = ++count[S1]; next } 
for (i in s) 

gsub ( i , s [ i l ) 
print 

The definition of a symbolic name must come before it is used. D 

Exercise 5-19. The easiest solution consonant with the divide-and-conquer strategy is to 
add a filter to the pipeline to delete rotated lines that begin with a word from the stop 
list: 
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awk '$1 1- /A(alanlandlbylforliflinlisloflonlthelto)$/' 
sort -f 

Exercise 5·23. How to distinguish between a literal - and the - used as a space is a 
question of style. We will use the awk escape sequence convention: \before the charac· 
ter when we want the literal character. We'll consider only -; the others are just ela
borations in both ix. genkey and ix. format. For -, we replace all instances of \
by some string that cannot occur, namely a tab followed by 1. No string containing a 
tab can occur, because tab is the field separator. The remaining tildes are substituted 
away, and the escaped ones are put back, unescaped. Thus, the first gsub in 
ix. genkey is replaced by 

gsub(/,-/, "'t1", $1) 
gsub(/-1, " ", $1) 
gsub(/,t1/, "-", S1) 

# protect quoted tildes 
# unprotected tildes now become blanks 
# restore protected tildes 

Also, the tildes should no longer be removed from the sort key. o 

Exercise 6-1. Only four lines have to be added, two in pass 1 and two in pass 2. 

0 

# ASSEMBLER PASS 1 
nextmem = 0 
FS = 11

[ 'tl+" 
# new 

while (getline <srcfile > 
input[nextmem] = $0 
sub(/#. *I, "") 
symtab[$1) = nextmem 

0) { 
# new: remember source line 
# strip comments 
# remember label location 

if ($2 I= "") { # save op, addr if present 
print $2 "'t" $3 >tempfile 
nextmem++ 

close(tempfile) 

# ASSEMBLER PASS 2 
nextmem = 0 
while (getline <tempfile > 0) { 

if ($2 1- /A[0-9)*$/) # if symbolic addr, 
S2 = symtab[$2) # replace by numeric value 

mem[nextmem++] = 1000 * op[$1] + $2 #pack into word 

for (i = 0; i < nextmem; i++) # new: print memory 
printf("%3d: %0Sd %s'n", i, mem[i], input[i]) #new 

Exercise 6-6. It's surprisingly difficult to find some simple modification of graph to do 
this, because knowledge of x and y is embedded throughout the program, and in many 
variables like bticks and 1 ticks. Perhaps more fruitful is to define a filter 
transpose that processes the input. Here is one, obtained by editing graph to take 
the appropriate action for each kind of line. 
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# transpose - input and output suitable for graph 
# input: data and specification of a graph 
# output: data and specification for the transposed graph 

BEGIN { 
number = 11 "[-+]?( [0-9]+[. ]?[0-9]*: [. ][0-9]+) 11 

\ 

"([eE][-+]?[0-9]+)?$ 11 

} 
$1 == c•bottom" &.&. $2 "ticks" { # ticks for x-axis 

$1 = 11 left" 
print 
next 

} 
$1 == c•left" &.&. $2 11 ticks" { # ticks for y-axis 

$1 = "bottom" 
print 
next 

} 

$1 == "range" # xmin ymin xmax ymax 
print $1, $3, $2, $5, $4 
next 

} 

$1 == "height" { $1 11width"; print; next } 
$1 == c•width" { $1 "height"; print; next } 
$1 - number&.&. $2 - number { nd++; print $2, $1, $3; next } 
$1 - number &.&. $2 1- number { # single number: 

nd++ # count data points 
print $1, nd, $2 # fill in both x andy 
next 

print } 

A simple version of logarithmic axes could be done the same way. D 

Exercise 6-13. These are all just additional cases in the large if statement. For 
instance, 

else if ($i == "pi") 
stack[++top] = 3.14159265358979 

D 

Exercise 7-1. The condition A[i] > A[i+1] is essentially the invariant that is enforced 
by the algorithm, so it should be true automatically. The real problem is that check 
doesn't check that the output is a permutation of the input: it won't notice if elements 
are moved outside of the proper array bounds. D 

Exercise 7-3. As described briefly in Chapter 8, awk uses a hash table to store arrays. 
These hash tables allow constant-time lookup of elements in small arrays, but take more 
time as the arrays grow. D 

Exercise 7-8. The END action inserted by makeprof is executed after any other END's 
that might be present, so an exit in an earlier END would stop the program. A partial 
fix is to change makeprof to print its END action before anything else. D 

Exercise 7-10. Again, push the nodes onto a stack instead of printing them, then print 
the stack from the bottom after the end of the input. Alternatively, reverse the roles of 
$1 and $2, either in rtsort or by a separate program. D 
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character class, complemented 29 
character class, regular expression 

29 
characters, table of escape 31 
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38, 45, 50-51' 54, 68, 181 
delete statement 52 
delimiters, balanced 77, 195 
dependency description, 

makefile 175 
dependency graph 176 
depth-first search algorithm 172, 

177 
derived table 106 
df s function 173 
divide and conquer v, 89, 110, 

121, 123-124, 130, 160, 184, 
202 

do statement 49 
dynamic regular expression 40, 

101, 184 

e, computation of 39 
echo program 63 
egrep command 59, 181, 184, 

186 
else, semicolon before 47 
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function, dfs 173 
function~ error 118, 149, 178 
function, exp 39 
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Grosse, E. H. vi 
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operator, in 52, 192 
operators, arithmetic 36, 44 
operators, assignment 38 
operators, associativity of 46 
operators, comparison 36 
operators, logical 10, 31, 37 
operators, precedence of 46 
operators, precedence of regular 

expression 30 
operators, relational 25, 37 
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